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It is noted in [i, 2] that during the inertial convergence of viscous cylindrical shells 
the inner shell boundary is arrested upon reaching a certain distance from the axis of sym- 
metry rmi n whose magnitude depends on the coefficient of viscosity and on the geometric and 
kinematic shell parameters. This dependence can be utilized to determine the coefficient 
of viscosity. However, measurements are made difficult because of the small rmi n for a suf- 
ficiently high convergence rate. 

Inertial convergence of a rotating cylindrical shell is investigated in this paper 
with compressibility and viscosity taken into account. Energy transformation and redistri- 
bution occurs during convergence of such a shell. The kinetic energy of radial motion is 
converted into rotation energy and into internal energy of the substance. The energy of 
the rotational motion goes over into thermal energy due to the viscous friction of the rotating 
shell layers. A time sets in here when the velocity of radial motion of the inner shell 
boundary becomes zero, the inner boundary is arrested at a certain distance from the axis 
of symmetry, after which separation of the shell starts. 

The quantity rmi n depends on the shell geometric dimensions, on the relationship of the 
kinetic energy of the radial and rotational motion at the initial time, and what is of special 
interest, on the coefficient of viscosity of the shell material. Depending on the initial 
data, rmi n for a viscous rotating shell can turn out to be substantially greater than for a 
shell of the same dimensions that does not rotate. 

The system of equations describing rotating shell motion with viscosity and compressi- 
bility taken into account has the following form [3] 

p d u ~ t  = --OP/~r + OS~,/ar + (S, ,  - -  S ~ ) / r  + p ~ r ,  

d ~ t  = - -2u~ / r  q- (OS,~/ar q- 2Srr 

dp~ t  = --p(au/Or + u/r), dr/dr = u, 

de/dt = - -  P di /p/dt  + (S~, + S ~  + 2S~r ( 1 ) 
P = P(p, e), Srr = ~(2Ou/Or - -  u/r)2/3, 

Sr = ( 2 / 3 ) ( ~ ( 2 u / r -  Ou/Or)), Sr ,  = ~r a~/Or, 

where ~ is the angular rotation, ~ is the coefficient of viscosity, Sij are the viscous 
stress tensor deviator components in an x, r, ~ coordinate system (ox is the axis of rota- 
tion), and the remaining notation is standard. 

Heat conductivity and second viscosity effects are not taken into account in this formu- 
lation. For the case of condensed media under consideration such an approximation is justi- 
fied. The heat conductivity effects are excluded since the thermal relaxation time �9 = 
s is substantially greater than the characteristic times of the process [3, 4] (~ is 
the characteristic dimension and X is the thermal diffusivity coefficient). The contribu- 
tion of second viscosity to the global part of the stress tensor is small compared with 
the pressure [5]. 

The system (i) was solved numerically by a finite-difference method using the method 
of splitting according to physical processes [6, 7]. The solution of the system (i) was 
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separated into two stages at each step of the integration over time. The first stage in 
the calculations is the solution of the subsystem describing the motion of a non-rotating 
shell (the equations of this stage are obtained from the system (i) by discarding all terms 
containing the angular velocity). Computation of the terms discarded in the first stage 
is performed in the second stage. Explicit difference schemes obtained by an integro-inter- 
polation method are utilized. The difference schemes are realized in a progran~ed complex 
[ 7 ] .  

The counting method and the program were tested in a number of problems that have ana- 
lytic solutions. In particular, convergence of a rotating cylindrical shell from an ideal 
fluid and convergence of a viscous shell without rotation were computed [2]. Good agreement 
is obtained between the computed and analytical results. For example, the discrepancy between 
the computed and analytical results is less than 1% in the radius of shell detent. 

Numerical investigation of the inertial convergence process was performed in an example 
of a cylindrical shell with inner radius R 0 = I0 cm and thickness AR 0 = 0.3537 cm. The 
equation of state was used in the Mie-Gruneisen form [5] 

p = p : o ~ ( 6 ~  - 1)In + r p ~  - e~ ) ,  

e~ = Co~[(6 ~ - -  n6)l(n - -  1) + i ] / 6 n ,  6 = P/Po 

with the parameters Po = 7.85 g/cmS; c o = 4.6 km/sec; n = 3; F = 0.67. At the initial 
time u 0 = 2 km/sec and an angular velocity ~0 = 2"103 sec-1, which corresponds to the 
linear velocity Uro t = u0R0 = 0.2 km/sec were given in the shell. 

Given as boundary conditions on the outer and inner shell surfaces are err = Or~ = 0. 
Values of rmi n determined in computations with a different number of counting points (20, 
40, 60) in the domain and different B are presented in Table I. Values of rmi n obtained by 
linear extrapolation to an infinite number of counting points are given in the last column 
of Table i and in Fig. i. The dependence of the shell turning radius on the time is shown 
in Fig. 2 (the number of the curve corresponds to the computation number from Table i). 

A maximal Uro t = 6.6 km/sec is achieved in the computation with zero viscosity at the 
time of detent (rmi n = 0.3 cm). The velocity calculated on the basis of the moment of momen- 
tum conservation law is Uro t = 0.2(10/0.3) = 6.67 km/sec. At the time of turning the shell 
material is in the compressed state; the maximal compression is 6ma x = P/P0 = 1.5. Conse- 
quently, rmi n = 0.3 cm from the computations is noticeably greater than the rmi n for an in- 
compressible shell with the same initial parameters (rmi n = 0.08 cm) calculated by the formu- 
la we determined 

As is seen, rmi n diminishes as the coefficient of viscosity increases (see Figs. 1 and 
2). This is explained by the fact that viscous friction of the shell layers results in 
diminution of the rate of inner layer rotation and of the centrifugal force acting on the 
shell layer and assuring its rotation. The thermal pressure grows because of rotation energy 

r rn -~n  ~ Cm 

0,2. 

1 5  " 
g } 4 p'10, Pa-sec 

Fig. 1 

r t cm 

"L 1 i 1 l - t  ~ 
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TABLE 1 

Computaq 
tion P. 

2 
4 

20 

0,348 
0,22 
O,i7i 
OA4 

Number of points 

Jo0 1 

0,326 I 0,318 I 0,i82 0,i7 
0,i3 O,li9 
0.t 0,086 

0,304 
0,i44 
0,089 
0.06 

dissipation, resulting in expansion of the inner layers and additional diminution of the 
shell turning radius. The maximal magnitude of the pressure reaches-140 GPa for ~ = 6.103 
Pa-sec. These parameters are realized near the time of inner shell boundary turning. The 
maximal rate of inner surface rotation for such a shell is ~3.5 km/sec. Let us note that 
in conformity with the momentum conservation law, the rate of rotation would be 
~30 km/sec in the absence of viscosity. In the absence of rotation, for a given shell de- 
termined by the formula from [2], the rmi n would equal ~i0 -14 cm, i.e., is not accessible 
to recording. The dependence of the turning radius of a rotating shell on D, detected in 
the computations, is illustrated in the Table 1 and in Figs. 1 and 2. 
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